Бондарев, Б. В.

Курс общей физики : в 3 кн. Книга 2. Электромагнетизм. Оптика. Квантовая физика : учебник для бакалавров / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. — 2-е изд. — М.: Издательство Юрайт, 2013. — 441 с. — Серия : Бакалавр. Углубленный курс.

ОГЛАВЛЕНИЕ

Предисловие	10
Краткая история электромагнетизма	.13
ЧАСТЬ 1. ЭЛЕКТРИЧЕСТВО	2 8
Глава 1. Постоянное электрическое поле в вакууме	28
1.1. Закон сохранения заряда	28
1.2. Взаимодействие двух точечных зарядов	30
1.3. Закон Кулона и принцип суперпозиции	32
1.4. Напряженность электрического поля	33
1.5. Потенциал электрического поля	35
1.6. Работа при перемещении заряда в постоянном	
электрическом поле	38
1.7. Силовые линии и эквипотенциальные поверхности	40
1.8. Плотности заряда	41
1.9. Энергия системы зарядов	42
1.10. Электрическое поле точечного заряда	44
1.11. Поток вектора	45
1.12. Поток вектора напряженности поля точечного заряда	46
1.13. Теорема Гаусса	47
1.14. Электрическое поле бесконечной равномерно заряженной	
плоскости	48
1.15. Электрическое поле заряженной сферы	50
1.16. Основные уравнения электростатики	.53
Глава 1*. Постоянное электрическое поле в вакууме	
(продолжение)	56
1.17. Электрический диполь	56
1.18. Электрическое поле системы зарядов на больших	
расстояниях	58
1.19. Электрическое поле сферически симметрично	
распределенного заряда	59
1.20. Теорема Остроградского — Гаусса	
1.21. Вывод уравнений электростатики	
в дифференциальной форме	62
1.22. Энергия электрического поля	63
Глава 2. Электрическое поле в диэлектриках	66
2.1. Полярные и неполярные молекулы	66
2.2. Диполь во внешнем электрическом поле	68
2.3. Полярызаныя лиэлектриков	70

2.4. Теорема Гаусса для поляризованности*	71
2.5. Электрическая индукция	74
2.6. Диэлектрическая восприимчивость и проницаемость	76
2.7. Уравнения электростатики для диэлектриков	77
2.8. Электрическое поле заряженного шара *	.77
2.9. Условия на границе раздела двух диэлектриков	.80
Глава 3. Проводники в постоянном электрическом поле	82
3.1. Распределение зарядов в проводниках	82
3.2. Электрическая емкость заряженного проводника	85
3.3. Емкость шара	86
3.4. Конденсаторы	87
3.5. Плоский конденсатор	89
3.6. Энергия заряженного проводника	92
3.7. Энергия заряженного конденсатора	92
3.8. Энергия электрического поля	93
3.9. Соединения конденсаторов	94
Глава 3*. Проводники в постоянном электрическом поле	
(продолжение)	97
3.10. Плоский конденсатор, заполненный неоднородным	
диэлектриком.	97
3.11. Цилиндрический конденсатор	100
3.12. Основная задача электростатики. Теорема единственности	.102
3.13. Электрическое поле точечного заряда,	
расположенного около заземленной плоскости	103
Глава 4. Электрический ток	106
4.1. Плотность тока. Сила тока	106
4.2. Закон Ома для участка цепи •	108
4.3. Соединения проводников	ΗО
4.4. Электродвижущая сила	112
4.5. Закон Ома для полной цепи	114
4.6. Правила Кирхгофа	.115
4.7. Закон Джоуля — Ленца	116
Глава 4*. Электрический ток (продолжение).	.118
4.8. Сила тока — поток плотности тока	.118
4.9. Уравнение непрерывности	121
4.10. Закон Джоуля — Ленца в дифференциальной форме	122
4.11. Задача о токе утечки конденсатора	123
часть 2. магнетизм	125
Глава 5. Действие магнитного поля на заряды и токи	125
5.1. Сила Лоренца	125
•	

5.2. Движение заряженной частицы в однородном и постоянном	
магнитном поле	. 126
5.3. Действие магнитного поля на проводник с током.	
Сила Ампера	129
Глава 5*. Действие магнитного поля на заряды и токи	
(продолжение)	131
5.4. Контур с током в магнитном поле	131
5.5. Определение отношения заряда электрона к его массе	134
5.6. Эффект Холла	141
Глава 6. Постоянное магнитное поле в вакууме	145
6.1. Закон Био — Савара — Лапласа	145
6.2. Магнитное поле кругового тока	
6.3. Основные уравнения теории постоянного магнитного поля.	.148
6.4. Магнитное поле бесконечно длинного соленоида	
6.5. Магнитное поле прямого тока	
6.6. Взаимодействие токов	153
Глава 6*. Постоянное магнитное поле в вакууме	150
(продолжение)	156
6.7. Расчет индукции магнитного поля кругового тока	
6.8. Расчет индукции магнитного поля на оси соленоида	
6.9. Магнитное поле прямого отрезка с током	
6.10. Теорема Стокса	162
6.11. Вывод дифференциальных уравнений теории постоянного	
магнитного поля	166
Глава 7. Постоянное магнитное поле в веществе	168
7.1. Электрические токи в атомах и молекулах	168
7.2. Намагниченность вещества. Напряженность магнитного поля	.170
7.3. Циркуляциия вектора намагниченности*	171
7.4. Напряженность магнитного поля	172
7.5. Магнитная восприимчивость и магнитная проницаемость	.173
7.6. Основные уравнения теории постоянного магнитного поля	
в веществе	
7.7. Магнитное поле заполненного веществом соленоида	.175
7.8. Условия на границе раздела двух магнетиков	176
ЧАСТЬ З. ЭЛЕКТРОМАГНЕТИЗМ.	181
Глава 8. Электромагнитная индукция	.181
8.1. Закон Фарадея и правило Ленца	181
8.2. Электродвижущая сила индукции. Уравнение Максвелла	.183
8.3. Самоиндукция	187
8.4. Индуктивность соленоида	
8.5. Энергия магнитного поля	188

Глава 8*. Электромагнитная индукция (продолжение)	191
8.6. Вихревое электрическое поле в соленоиде	191
8.7. Токи Фуко	192
8.8. Индуктивность коаксиального кабеля	193
8.9. Взаимная индукция	195
8.10. Один из способов измерения магнитной индукции	198
Глава 9. Электромагнитные колебания	200
9.1. Колебательный контур. Гармонические колебания	200
9.2. Затухающие электромагнитные колебания	202
9.3. Вынужденные электромагнитные колебания	206
Глава 9*. Электромагнитные колебания (продолжение).	208
9.4. Дифференциальное уравнение затухающих	
электромагнитных колебаний	208
9.5. Дифференциальное уравнение вынужденных электромагнитных	
колебаний. Резонанс напряжения и резонанс тока	210
9.6. Метод комплексных амплитуд	215
9.7. Мощность переменного тока	225
Глава 10. Электромагнитное поле	227
10.1. Уравнения Максвелла	227
10.2. Плотность и поток энергии электромагнитного поля	229
Глава 10*. Электромагнитное поле (продолжение)	231
10.3. Вывод уравнения непрерывности из уравнений Максвелла	.231
10.4. Вывод соотношения, связывающего плотность энергии	
1	.232
10.5. Ковариантность уравнений Максвелла	234
Глава 11. Электромагнитные волны	237
11.1. Волновое уравнение и его решение	237
11.2. Гармоническая волна	238
11.3. Волны в пространстве	240
11.4. Плоские электромагнитные волны *	241
11.5. Плоская гармоническая электромагнитная волна	244
11.6. Интенсивность волны	246
11.7. Отражение электромагнитной волны от границы раздела	2.40
двух сред	248
ЧАСТЬ 4. ВОЛНОВАЯ ОПТИКА	250
Глава 12. Интерференция	250
12.1. Сложение волн	250
12.2. Когерентность	252
12.3. Интерференция света от двух точечных источников	255
12.4. Интерференция света в тонких пленках	257

Глава 13*. Дифракция	259
13.1. Принцип Гюйгенса — Френеля	259
13.2. Графический метод сложения гармонических колебаний	.261
13.3. Дифракция света на круглом отверстии	262
13.4. Дифракция света на щели	269
13.5. Дифракционная решетка	274
Глава 14. Поляризация света	277
14.1. Поляризация электромагнитной волны	277
14.2. Естественный и поляризованный свет	279
14.3. Поляризация света при отражении и преломлении	280
14.4. Поляризация света при двойном лучепреломлении	283
14.5. Интерференция поляризованных лучей	286
Глава 15*. Взаимодействие света с веществом	288
15.1. Дисперсия света	288
15.2. Электронная теория дисперсии	288
15.3. Групповая скорость волны	294
15.4. Поглощение света	297
ЧАСТЬ 5. КВАНТОВАЯ ОПТИКА	299
TACIB 3. KBAHIOBAN OHIUKA	299
Глава 16. Тепловое излучение	299
16.1. Взаимодействие излучения с веществом и его характеристики	.299
16.2. Законы равновесного теплового излучения	302
16.3. Формула Планка	305
Глава 16*. Тепловое излучение (продолжение)	306
16.4. Освещенность поверхности изотропным излучением	306
16.5. Электромагнитное излучение в полости твердого тела	.310
16.6. Формула Релея — Джинса	313
16.7. Вероятность	314
16.8. Вывод формулы Планка	315
16.9. Закон Стефана — Больцмана	318
16.10. Закон смещения Вина	318
Глава 17. Фотоны	320
17.1. Фотоны	320
17.2. Фотоэффект	321
17.3. Тормозное рентгеновское излучение	325
17.4. Эффект Комптона	328
Глава 17*. Фотоны (продолжение)	332
17.5. Давление света. Опыты Лебедева	332
17.6. Давление пучка света	333
17.7. Давление изотропного излучения	337

ЧАСТЬ 6. АТОМНАЯ ФИЗИКА		.339
Глава 18. Боровская теория атома		339
18.1. Спектр излучения атома водорода		339
18.2. Планетарная модель атома		342
18.3. Опыты Франка и Герца		344
18.4. Теория Бора		348
Глава 19. Основы квантовой механики		353
19.1. Корпускулярно-волновой дуализм. Волны де Бройля		353
19.2. Волновая функция и ее смысл		
19.3. Операторы в квантовой механике		358
19.4. Уравнение Шредингера		
19.5. Соотношение неопределенностей		
19.6. Собственные функции и собственные значения операторов*		
19.7. Стационарные состояния		365
19.7. Стационарные состояния	•	.303
Глава 20. Простые задачи квантовой механики		367
20.1. Свободная частица		367
20.2. Движение частицы в поле консервативной силы		369
20.3. Стационарное движение частицы вдоль прямой в поле		
консервативной силы		372
20.4. Частица в потенциальной яме с бесконечно высокими		
стенками		374
20.5. Гармонический осциллятор		378
Г т с т с 20* Птости водин посторой изменения		
Глава 20*. Простые задачи квантовой механики (продолжение)		380
20.6. Падение частицы на потенциальный барьер		380
20.7. Частица в ящике с непроницаемыми стенками		389
Глава 21. Строение атома		391
21.1. Атом водорода в квантовой механике		392
21.2. Пространственное квантование		396
21.3. Гиромагнитное отношение		397
21.4. Спин электрона		398
21.5. Многоэлектронные атомы		
21.6. Векторная модель атома*		404
21.7. Опыт Штерна и Герлаха		
21.8. Эффект Зеемана*		
21.9. Рентгеновские спектры атомов		411
Глава 22. Молекулы		414
22.1. Химическая связь		
22.2. Ион молекулы водорода*		
22.3. Энергия двухатомной молекулы		
22.4. Комбинационное рассеяние света		424

ЧАСТЬ 7. ФИЗИКА АТОМНОГО ЯДРА	427
Глава 23. Атомное ядро	427
23.1. Состав и характеристики атомных ядер	427
23.2. Самопроизвольный распад частицы	428
23.3. Энергия связи	429
23.4. Радиоактивность	430
23.5. Закон радиоактивного распада	433
23.6. Ядерные реакции	434
23.7. Капельная модель ядра*	435
23.8. Деление тяжелых ядер	437
23.9. Реакции термоядерного синтеза	438
Литература	441