Кудрявцев, Л. Д.

Курс математического анализа. В 3 т. Т. 2 : учебник для бакалавров / Л. Д. Кудрявцев. — 6-е изд., перераб. и доп. — М . : Издательство Юрайт, 2014. — 720 с. — Серия : Бакалавр. Базовый курс.

Оглавление

		Глава 3	
		Ряды	
;	30. Числ	повые ряды	5
	30.1.	Определение ряда и его сходимость	
	30.2.	Свойства сходящихся рядов	9
	30.3.	Критерий Коши сходимости ряда	11
	30.4.	Ряды с неотрицательными членами	13
	30.5.	Признак сравнения для рядов	
		с неотрицательными членами.	
	20.6	Метод выделения главной части члена ряда	. 16
	30.6.	Признаки Даламбера и Коши для рядов	20
	20.7	с неотрицательными членами	.20
	30.7.	Интегральный признак сходимости рядов	22
	30.8*.	с неотрицательными членами	23
	30.8	Неравенства Гёльдера и Минковского для конечных и бесконечных сумм	25
	30.9.	Знакопеременные ряды	
	30.10.	Абсолютно сходящиеся ряды. Применение абсолютно	
	30.10.	сходящихся рядов к исследованию сходимости	
		произвольных рядов	30
	30. П.	Признаки Даламбера и Коши для произвольных	
		числовых рядов	38
	30Л2.	Сходящиеся ряды, не сходящиеся абсолютно.	
		Теорема Римана	39
	30.13.	Преобразование Абеля. Признаки сходимости	
		Дирихле и Абеля	43
	30.14*.	Асимптотическое поведение остатков сходящихся	
		рядов и частичных сумм расходящихся рядов	48
	30.15.	О суммируемости рядов методом	
		средних арифметических	. 52
§ 3	31. Беск	онечные произведения	53
	31.1.	Основные определения. Простейшие свойства	
		бесконечных произведений	53
	31.2.	Критерий Коши сходимости бесконечных	
		произведений	57
	31.3.	Бесконечные произведения с действительными	
	24.4	сомножителями	
	31.4.	Абсолютно сходящиеся бесконечные произведения	62
	31,5*.	Дзета-функция Римана и простые числа	
ş		кциональные последовательности и ряды	67
	32 ,1.	Сходимость функциональных последовательностей	67
		и папор	

32.2.	Равномерная сходимость функциональных	
	последовательностей	
32.3.	Равномерно сходящиеся функциональные ряды	79
32.4.	Свойства равномерно сходящихся рядов	
	и последовательностей	90
33. Стег	тенные ряды	100
33.1.	Радиус сходимости и круг сходимости степенного ряда	100
33.2*.	Формула Кош и — Адамара для радиуса сходимости	
	степенного ряда	108
33.3.	Аналитические функции	
33.4.	Аналитические функции в действительной области	112
33.5.	Разложение функций в степенные ряды. Различные	
	способы записи остаточного члена формулы Тейлора	116
33.6.	Разложение элементарных функций в ряд Тейлора	121
33.7.	Методы разложения функций в степенные ряды	
33.8.	Формула Стерлинга	
33.9*.	Формула и ряд Тейлора для векторных функций	
	. Асимптотические степенные ряды	
	. Свойства асимптотических степенных рядов	
	атные ряды	
34.1.	Кратные числовые ряды	
34.2.	Кратные функциональные ряды	
34.2.	кратные функциональные ряды.	102
	Глава 4	
	Дифференциальное исчисление	
	функций многих переменных	
25 14		165
	огомерные пространства	105
35.1.	Окрестности точек. Пределы последовательностей	165
25.2	TOYEK	
35.2.	Различные типы множеств	
35.3.	Компакты	
35.4.	Многомерные векторные пространства	203
-	едел и непрерывность функций многих переменных	
	гображений	
36.1.	Функции многих переменных	
36.2.	Отображения. Предел отображений	
36.3.	Непрерывность отображений в точке	
36.4.	Свойства пределов отображений	
36.5.	Повторные пределы.	
36.6.	Предел и непрерывность композиции отображений	223
36.7.	Непрерывные отображения компактов	
36.8.	Равномерная непрерывность «•••	• 229
36.9.	Непрерывные отображения линейно-связных	222
26.10	множеств	
36.10.	Свойства непрерывных отображений	235

§	37.	Част	гные производные. Дифференцируемость функций	
		мног	гих переменных	240
	37	.1.	Частные производные и частные дифференциалы	240
		.2.	Дифференцируемость функций в точке	244
	37	.3.	Дифференцирование сложной функции	
	37	.4.	Инвариантность формы первого дифференциала	
			относительно выбора переменных. Правила	
			вычисления дифференциалов	256
	37	.5.	Геометрический смысл частных производных	
			и полного дифференциала	262
	37	.6.	Градиент функции	265
	37	.7.	Производная по направлению	265
	37	.8.	Пример исследования функций двух переменных	271
8	38.	Част	гные производные и дифференциалы высших	
0			ідков.	273
	38		Частные производные высших порядков	
	38	.2.	Дифференциалы высших порядков	
8	39	Фор	мула Тейлора и ряд Тейлора для функций многих	
3	37.		менных	281
	39	.1.	Формула Тейлора для функций многих переменных	281
		.2.	Формула конечных приращений для функций многих	201
			переменных	291
	39	.3.	Оценка остаточного члена формулы Тейлора	
			во всей области определения функции	292
	39	.4.	Равномерная сходимость по параметру семейства	
			функций	295
	39	.5.	Замечания о рядах Тейлора для функций многих	
			переменных	298
8	40.	Экст	гремумы функций многих переменных	
J).1.	Необходимые условия экстремума	
).2.	Достаточные условия строгого экстремума	
).3.	Замечания об экстремумах на множествах	
8			вные функции. Отображения	
8		.1.	Неявные функции, определяемые одним уравнением	309
		.2.	Произведения множеств	
		.3.	Неявные функции, определяемые системой уравнений	317
		.4.	Векторные отображения	
		.5.	Линейные отображения	
		.6.	Дифференцируемые отображения	
		.7.	Отображения с неравным нулю якобианом.	
			Принцип сохранения области	344
	41	.8.	Неявные функции, определяемые уравнением,	•
			в котором нарушаются условия единственности.	
			Особые точки плоских кривых	349
	41	1.9.	Замена переменных	

8	42. Зави	симость функций	363
3	42.1.	Понятие зависимости функций. Необходимое условие	
		зависимости функций	363
	42.2.		365
8	43 Vcπc	овный экстремум	371
8	43.1.	Понятие условного экстремума	
	43.2.	Метод множителей Лагранжа для нахождения точек	371
	13.2.	условного экстремума	376
	43.3*.	Геометрическая интерпретация метода Лагранжа	379
	43.4*.	Стационарные точки функции Лагранжа	
	43.5*.	Достаточные условия для точек условного экстремума	388
		Глава 5	
		Интегральное исчисление	
		функций многих переменных	
§	44. Kpan	гные интегралы	393
Ü	44.1.	Понятие объема в лмерном пространстве	
		(мера Жордана). Измеримые множества	393
	44.2.	Множества меры нуль	
	44.3.	Определение кратного интеграла	417
	44.4.	Существование интеграла	424
	44.5*.	Об интегрируемости разрывных функций	431
	44.6.	Свойства кратного интеграла	434
	44.7*.	Критерии интегрируемости функций Римана и Дарбу	
		и их следствия	442
§	45. Свед	дение кратного интеграла к повторному	451
	45.1.	Сведение двойного интеграла к повторному	451
	45.2.	Обобщение на /«-мерный случай	459
	45.3*.	Обобщенное интегральное неравенство Минковского	462
	45.4.	Объем «мерного шара	464
	45.5.	Независимость меры от выбора системы координат	465
	45.6*.	Формулы Ньютона—Лейбница и Тейлора	466
§	46. Заме	ена переменных в кратных интегралах	469
	46.1.	Линейные отображения измеримых множеств	469
	46.2.	Метрические свойства дифференцируемых	
		отображений	472
	46.3.	Формула замены переменных в кратном интеграле	482
	46.4.	Геометрический смысл абсолютной величины	
		якобиана отображения	490
	46.5.	Криволинейные координаты	491
§	47. Кри	волинейные интегралы	494
	47.1-	Криволинейные интегралы первого рода	494
	47.2.	Криволинейные интегралы второго рода	498
	47.3.	Расширение класса допустимых преобразований	
		параметра кривой • • *	

	47.4.	Криволинейные интегралы по кусочно-гладким	504
	47.5	кривым	
	47.5.	Интеграл Стилтьеса	
	47.6*.	Существование интеграла Стилтьеса	507
	47.7.	Обобщение понятия криволинейного интеграла	514
	47.0	второго рода	
	47.8.	Формула Грина	519
	47.9.	Вычисление площадей с помощью криволинейных	525
	47.10	интегралов	323
	47.10.	Геометрический смысл знака якобиана отображения	525
	47.11	плоской области	323
	47.11.	Условия независимости криволинейного интеграла	520
		от пути интегрирования	
§		обственные кратные интегралы	
	48.1.	Основные определения	539
	48.2.	Несобственные интегралы от неотрицательных	
		функций	542
	48.3.	Несобственные интегралы от функций,	
		меняющих знак	546
§	49. Нек	оторые геометрические и физические приложения	
	крат	ных интегралов	550
	49.1.	Вычисление площадей и объемов	550
	49.2.	Физические приложения кратных интегралов	551
Ş	50. Элем	иенты теории поверхностей	.553
Ŭ	50.1.	Векторные функции нескольких переменных	
	50.2.	Элементарные поверхности	
	50.3.	Эквивалентные элементарные поверхности.	
		Параметрически заданные поверхности	557
	50.4.	Поверхности, заданные неявно	
	50.5.	Касательная плоскость и нормаль к поверхности	.567
	50.6.	Явные представления поверхности	.574
	50.7.	Первая квадратичная форма поверхности	578
	50.8.	Кривые на поверхности, вычисление их длин	
		и углов между ними	.580
	50.9.	Площадь поверхности	. 581
	50.10.	Ориентация гладкой поверхности	584
	50.11.	Склеивание поверхностей	588
	50.12.	Ориентируемые и неориентируемые поверхности	592
	50.13.	Другой подход к понятию ориентации поверхности	593
	50.14.	Кривизна кривых, лежащих на поверхности.	
		Вторая квадратичная форма поверхности	
	50.15.	Свойства второй квадратичной формы поверхности	601
	50.16.	Плоские сечения поверхности	
	50.17.	Нормальные сечения поверхности	
	50.18.	Главные кривизны. Формула Эйлера	
	50.19.	Вычисление главных кривизн	
	50.20.	Классификация точек поверхности	613

§	51. Пов	ерхностные интегралы	617
	51.1.	Определение и свойства поверхностных интегралов	617
	51.2.	Формула для представления поверхностного интеграла	
		второго рода в виде двойного интеграла	621
	51.3.	Поверхностные интегралы как пределы интегральных	
		сумм.	623
	51.4.	Поверхностные интегралы по кусочно-гладким	
		поверхностям	626
	51.5.	Обобщение понятия поверхностного интеграла	
		второго рода	626
§	52. Ска	пярные и векторные поля	631
	52.1.	Определения	631
	52.2.	Об инвариантности понятий градиента, дивергенции	
		и вихря	637
	52.3.	Формула Гаусса-Остроградского. Геометрическое	
		определение дивергенции	640
	52.4.	Формула Стокса. Геометрическое определение вихря	647
	52.5.	Соленоидальные векторные поля	653
	52.6.	Потенциальные векторные поля . •	655
Ş	53. Соб	ственные интегралы, зависящие от параметра	663
Ü	53.1.	Определение интегралов, зависящих от параметра;	
		их непрерывность и интегрируемость по параметру	663
	53.2.	Дифференцирование интегралов, зависящих	
		от параметра	665
8	54. Hec	обственные интегралы, зависящие от параметра	668
·	54.1.	Основные определения. Равномерная сходимость	
		интегралов, зависящих от параметра	668
	54.2*.	Признак равномерной сходимости интегралов	674
	54.3.	Свойства несобственных интегралов, зависящих	
		от параметра	676
	54.4.	Применение теории интегралов, зависящих	
		от параметра, к вычислению определенных интегралов	682
	54.5.	Эйлеровы интегралы	686
	54.6.	Комплекснозначные функции действительного	
		аргумента	691
	54.7*.	Асимптотическое поведение гамма-функции	694
	54.8*.	Асимптотические ряды	698
	54.9*.	Асимптотическое разложение неполной	
		гамма-функции	702
	54.10.	Замечания о кратных интегралах, зависящих	
		от параметра	704
	Предм	етно-именной указатель	706
	Указап	пель основных обозначений	713