Нейросетевые модели и технологии в финансовом анализе: курс лекций / сост. Т. В. Сумская; Новосиб. гос. ун-т экономики и управления. — Новосибирск: НГУЭУ, 2015. — 84 с.

ОГЛАВЛЕНИЕ

пр	бедисловие	3
1.	ОСНОВНЫЕ ПОНЯТИЯ НЕЙРОСЕТЕВОГО	
	МОДЕЛИРОВАНИЯ	5
	1.1. Понятие и структура нейронной сети.	
	«Обучение» нейронной сети	5
	1.2. Преимущества и недостатки нейронных сетей.	
	Параллели из биологии	7
	Контрольные вопросы	10
2.	БАЗОВАЯ ИСКУССТВЕННАЯ МОДЕЛЬ.	
	ПРИМЕНЕНИЕ НЕЙРОННЫХ СЕТЕЙ	11
	2.1. Базовая искусственная модель	11
	2.2. Применение нейронных сетей	13
	Контрольные вопросы	15
3.	СБОР ДАННЫХ ДЛЯ НЕЙРОННОЙ СЕТИ	16
	Контрольные вопросы	19
4.	ПРЕ / ПОСТ ПРОЦЕССИРОВАНИЕ	20
	4.1. Передаточная функция нейронной сети	20
	4.2. Шкалирование данных	21
	4.3. Использование номинальных переменных	21
	4.4. Задачи классификации и регрессии	22
	Контрольные вопросы	23
5.	МНОГОСЛОЙНЫЙ ПЕРСЕПТРОН (MPL)	24
	5.1. Обучение многослойного персептрона	24
	5.2. Алгоритм обратного распространения	26
	5.3. Переобучение и обобщение	28
	5.4. Отбор данных	31
	5.5. Проблемы обучения многослойного персептрона	33
	5.6. Другие алгоритмы обучения MPL	
	Контрольные вопросы	41
6.	РАДИАЛЬНАЯ БАЗИСНАЯ ФУНКЦИЯ (RBF)	43
	6.1. Структура сети типа радиальной базисной функции.	
	Преимущества и ограничения сетей RBF	
	перед сетями МРС	43

6.2. Этапы обучения сети RBF	46
Контрольные вопросы	47
. ВЕРОЯТНОСТНАЯ НЕЙРОННАЯ СЕТЬ (PNN)	48
Контрольные вопросы	51
. ОБОБЩЕННО-РЕГРЕССИОННАЯ НЕЙРОННАЯ С	ЕТЬ
(GRNN)	52
Контрольные вопросы	53
. ЛИНЕЙНАЯ СЕТЬ	54
Контрольные вопросы	54
0. СЕТЬ КОХОНЕНА	55
10.1. Особенности и возможности применения	
сетей Кохонена	55
10.2. Обучение сети Кохонена	56
Контрольные вопросы	59
1. РЕШЕНИЕ ЗАДАЧ КЛАССИФИКАЦИИ В ПАКЕТЕ	<u>L</u>
ST NEURAL NETWORKS	60
Контрольные вопросы	64
2. РЕШЕНИЕ ЗАДАЧ РЕГРЕСИИ	
B ΠΑΚΕΤΕ ST NEURAL NETWORKS	65
Контрольные вопросы	70
3. ПРОГНОЗИРОВАНИЕ ВРЕМЕННЫХ РЯДОВ	
B HAKETE ST NEURAL NETWORKS	71
Контрольные вопросы	73
4. ОТБОР ПЕРЕМЕННЫХ	
И ПОНИЖЕНИЕ РАЗМЕРНОСТИ	74
Контрольные вопросы	78