Рогачев Н. М. Физика. Учебный курс для среднего профессионального образования: учебное пособие для СПО / Н. М. Рогачев, О. А. Левченко. — Санкт-Петербург: Лань, 2022. — 312 с. — Текст: непосредственный.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
ЧАСТЬ 1. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ	7
Глава 1. КИНЕМАТИКА МАТЕРИАЛЬНОЙ ТОЧКИ	7
§ 1. Скалярные и векторные величины	7
§ 2. Механическое движение. Кинематическое уравнение движения	9
§ 3. Равномерное прямолинейное движение. Скорость	10
§ 4. Равнопеременное движение. Ускорение	12
§ 5. Движение тела, брошенного под углом к горизонту	14
§ 6. Свободное падение тел	15
§ 7. Вращение тела вокруг неподвижной оси	16
Глава 2. ЭЛЕМЕНТЫ СТАТИКИ	25
§ 8. Момент силы. Механическое равновесие	25
§ 9. Центр тяжести тела	26
§ 10. Основы гидростатики	26
Глава 3. ЗАКОНЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ	35
§11. Законы Ньютона	35
§ 12. Силы в механике	36
§ 13. Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость	37
§ 14. Преобразования Галилея. Сложение скоростей	39
§ 15. Импульс тела. Закон сохранения импульса	40
§ 16. Движение тела переменной массы	41
§ 17. Центр масс. Закон движения центра масс	42
§ 18. Энергия, работа, мощность	43
§ 19. Кинетическая и потенциальная энергия	44
§ 20. Гравитационное поле. Напряженность и потенциал поля	46
§ 21. Закон сохранения энергии	47
§ 22. Космические скорости	48
§ 23. Соударение тел	49
§ 24. Простые механизмы. КПД механизма	51
§ 25. Границы применимости классической механики	52
Глава 4. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ	61
§ 26. Гармонические колебания	61
§ 27. Математический маятник.	
Превращение энергии при колебаниях маятника	63
§ 28. Сложение гармонических колебаний одного направления	64
§ 29. Затухающие колебания	65
§ 30. Вынужденные колебания. Резонанс	66
§ 31. Механические волны в упругой среде	68
§ 32. Уравнение плоской бегущей волны	69
§ 33. Стоячие волны	69
§ 34. Энергия и плотность энергии волны	70
§ 35. Звуковые волны	71
§ 36. Ультра- и инфразвук	72

ЧАСТЬ 2. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ	
И ТЕРМОДИНАМИКИ	78
Глава 5. ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ	
ИДЕАЛЬНОГО ГАЗА	78
§ 37. Понятия и определения	78
§ 38. Основные положения молекулярно-кинетической теории	79
§ 39. Количество вещества. Масса и размеры молекул	80
§ 40. Основное уравнение молекулярно-кинетической теории	81
§ 41. Уравнение состояния идеального газа	82
§ 42. Закон распределения молекул по скоростям	83
§ 43. Барометрическая формула. Распределение Больцмана	85
§ 44. Средняя длина свободного пробега молекул	86
§ 45. Явления переноса в газах	87
Глава 6. ОСНОВЫ ТЕРМОДИНАМИКИ	95
§ 46. Внутренняя энергия идеального газа	95
§ 47. Работа в термодинамике	97
§ 48. Первое начало термодинамики	97
§ 49. Кинетическая теория теплоемкостей	98
§ 50. Изопроцессы в газах	99
§ 51. Адиабатический процесс	101
§ 52. Круговые обратимые и необратимые процессы. Цикл Карно	102
§ 53. Второе начало термодинамики	105
Глава 7. ТВЕРДОЕ И ЖИДКОЕ СОСТОЯНИЯ	111
§ 54. Твердые тела. Кристаллические и аморфные тела	111
§ 55. Механические свойства твердых тел	111
§ 56. Тепловое расширение твердых тел	112
§ 57. Поверхностное натяжение жидкости	113
§ 58. Смачивание. Капиллярные явления	114
§ 59. Плавление. Удельная теплота плавления	116
§ 60. Парообразование и конденсация. Испарение и кипение.	
Насыщенные и ненасыщенные пары	116
§ 61. Уравнение теплового баланса	117
§ 62. Абсолютная и относительная влажность воздуха. Точка росы	118
Часть 3. ОСНОВЫ ЭЛЕКТРОДИНАМИКИ	122
Глава 8. ЭЛЕКТРОСТАТИКА	122
§ 63. Электрический заряд. Закон Кулона	122
§ 64. Электростатическое поле. Напряженность электростатического	
поля	123
§ 65. Потенциал электростатического поля	125
§ 66. Связь между напряженностью электростатического	
поля и потенциалом	126
§ 67. Электрический диполь	127
§ 68. Электрические свойства диэлектриков	128
§ 69. Поляризация диэлектрика. Напряженность поля в диэлектрике	129

§ 70. Сегнетоэлектрики	131
§ 71. Проводники в электростатическом поле	132
§ 71. Проводники в электростатическом поле § 72. Конденсаторы	133
§ 73. Энергия электростатического поля	135
Глава 9. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК	143
§ 74. Условия возникновения электрического тока. Сила тока.	143
у 74. Условия возникновения электрического тока. Сила тока. Плотность тока	143
	143
§ 75. Электродвижущая сила (ЭДС) и напряжение	144
§ 76. Закон Ома для однородного участка цепи§ 77. Работа и мощность тока. Закон Джоуля - Ленца	146
§ 77. габота и мощность тока. Закон джоуля - ленца § 78. Закон Ома для неоднородного участка цепи	148
· · · · · · · · · · · · · · · · · · ·	149
§ 79. Правила Кирхгофа. Расчет разветвленной электрической цепи	150
§ 80. Основы электронной теории проводимости металлов	130
§ 81. Электрический ток в растворах и расплавах электролитов.	150
Закон электролиза	152
§ 82. Электрический ток в газах. Самостоятельный	152
и несамостоятельный разряды	153
§ 83. Понятие о плазме	154
§ 84. Электрический ток в вакууме. Электронная эмиссия.	155
Электронно-лучевая трубка	155
Глава 10. МАГНИТНОЕ ПОЛЕ. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ	163
§ 85. Магнитное поле тока. Индукция магнитного поля	163
§ 86. Закон Ампера. Взаимодействие проводников с током	164
§ 87. Рамка с током в магнитном поле	165
§ 88. Сила Лоренца. Движение заряженных частиц в магнитном поле	165
§ 89. Магнитный поток. Работа, совершаемая при перемещении	167
проводника и контура с током в магнитном поле	167
§ 90. Магнитные моменты электронов и атомов.	1.60
Диамагнетики и парамагнетики	168
§ 91. Ферромагнетизм	170
§ 92. Электромагнитная индукция. Законы Фарадея и Ленца	172
§ 93. Явление самоиндукции. Индуктивность	173
§ 94. Взаимная индукция. Трансформатор	173
§ 95. Энергия магнитного поля	175
Глава 11. ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ	181
§ 96. Свободные электромагнитные колебания в контуре	181
§ 97. Собственная частота колебаний в контуре. Формула Томсона	182
§ 98. Затухающие электромагнитные колебания	183
§ 99. Вынужденные электромагнитные колебания	184
§ 100. Переменный электрический ток. Действующие значения	105
напряжения и силы тока	185
§ 101. Резонанс в цепи переменного тока	186
§ 102. Электромагнитные волны. Фазовая скорость	187
§ 103. Энергия электромагнитных волн	189
§ 104. Излучение диполя	190

§ 105. Излучение и прием электромагнитных волн.	
Принцип радиосвязи	191
§ 106. Шкала электромагнитных волн	193
Часть 4. ОПТИКА	197
Глава 12. ГЕОМЕТРИЧЕСКАЯ ОПТИКА	197
§ 107. Элементы фотометрии	197
§ 108. Законы геометрической оптики	198
§ 109. Ход лучей света в плоскопараллельной пластине	
и трехгранной призме. Плоское зеркало	199
§ 110. Линзы. Формулы тонкой линзы	201
§ 111. Построение изображений в линзах	203
§ 112. Аберрации оптических систем	205
§ 113. Фотоаппарат. Глаз, очки	206
§ 114. Микроскоп	207
Глава 13. ВОЛНОВЫЕ СВОЙСТВА СВЕТА	213
§ 115. Уравнение световой волны. Интерференция света	213
§ 116. Расчет интерференционной картины от двух источников	214
§ 117. Методы наблюдения интерференции света	215
§ 118. Интерференция в тонких пленках	216
§ 119. Кольца Ньютона	217
§ 120. Интерферометр Майкельсона	218
§ 121. Просветление оптики	219
§ 122. Дифракция света. Дифракционная решетка	219
§ 123. Физические принципы голографии	221
§ 124. Поляризация света. Естественный и поляризованный свет	224
§ 125. Поляризация света при отражении и преломлении.	
Закон Брюстера	225
§ 126. Двойное лучепреломление. Поляризационные призмы	226
§ 127. Дисперсия света. Нормальная и аномальная дисперсии.	
Дисперсионный спектр	227
§ 128. Рентгеновское излучение. Закон Мозли	229
часть 5. Элементы теории относительности.	
КВАНТОВАЯ ФИЗИКА. АТОМ И АТОМНОЕ ЯДРО	235
Глава 14. ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ	
§ 129. Постулаты специальной теории относительности (СТО).	233
Преобразования Лоренца	235
§ 130. Релятивистская масса и импульс частицы.	233
Связь массы, энергии и импульса	238
Глава 15. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ	242
§ 131. Тепловое излучение. Закон Кирхгофа	242
§ 131. Тепловое излучение. Закон кирхгофа § 132. Законы излучения черного тела	243
§ 132. Формула Планка	244
§ 133. Формула планка § 134. Внешний фотоэлектрический эффект	244
§ 134. Бисшний фотоэлектрический эффект § 135. Гипотеза де Бройля. Дифракция электронов	246
у 155. 1 инотеза де вроини. Дифракции электронов	4 +0

ПРИЛОЖЕНИЯ НЕКОТОРЫЕ СВЕДЕНИЯ ПО МАТЕМАТИКЕ	294
при поления	47 I
	291
ВАКЛЮЧЕНИЕ	288
§ 154. Элементарные частицы. Фундаментальные взаимодействия	281
§ 153. Дозиметрия. Дозы облучений	279
§ 152. Методы регистрации ионизирующих излучений	279
§ 151. Изотопы и их применение	277
§ 150. Ядерные реакции. Ядерный реактор	273
§ 149. Закон радиоактивного распада	272
§ 148. Радиоактивность	270
§ 147. Ядерные силы. Энергия связи атомных ядер	269
§ 146. Структура ядра атома	269
Глава 18. ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ	269
§ 145. Полупроводниковый диод и транзистор	267
§ 144. Полупроводники. Собственная и примесная проводимость	264
§ 143. Энергетические зоны металлов, диэлектриков и полупроводников	263
Глава 17. ЭЛЕМЕНТЫ ФИЗИКИ ТВЕРДЫХ ТЕЛ	263
§ 142. Индуцированное излучение. Лазеры	257
§ 141. Опыт Франка и Герца	256
§ 140. Теория Бора	255
§ 139. Спектр атома водорода	254
§ 138. Модели атома Томсона и Резерфорда	253
Глава 16. СТРОЕНИЕ АТОМА	253
§ 136. Фотон. Давление света§ 137. Корпускулярно-волновой дуализм света	248